INTRODUCTION TO GENERAL SCIENCE
FROM A CHRISTIAN PERSPECTIVE
by David A. Prentice, M.Ed., M.A.S.T.
Lotact vancion available at httms://www.yanaation.anavalytion.mat/anaction.in.coionaa.advaation/
Latest version available at https://www.creationorevolution.net/creation-in-science-education/copyright 2022

TABLE OF CONTENTS

\mathbf{r}		\sim		
v	ret	ŀ٩	0	0
		а	·	L

CH	HAPTER 1 - INTRODUCTION	1
I.	Why should Christians study science?	
II.	Science and the need for God.	2
	A. Characteristics of creationist's God.	
	B. Characteristics of theistic evolutionist's God.	
	C. Characteristics of atheist's "Random Chance"	3
	Pascal's Wager	
III.	. The religious roots of science	4
IV.	. How do you know what you know (or think you know)?	5
	A. Solipsism.	
	B. Scientific knowledge.	
	1. Senses	6
	2. Authority	
	3. Logic	
	a. Deductive logic	7
	b. Inductive logic	9
	4. Intuition or feeling	
	5. Wishful thinking	
	6. Bluffing	10
V.	Could there be such a thing as absolute truth?	
	. Types of knowledge used in science	
VI	I.Science, history, and belief	11
	A. Science: present, repeatable, observable	
	B. History: past, non-repeatable, eyewitnesses	
	C. Belief: past, non-repeatable, no eyewitnesses	
	D. Operational vs. historical science	12
Ch	apter Review questions	
CH	HAPTER 2 - MATHEMATICS AND THE TOOLS OF SCIENCE	13
I.	Mathematics: the language of science	
	Measurement in science	15
	A. Standards of measurement	
	1. English (Imperial) system	
	2. Metric system (SI)	
	a. Length, area, volume, and mass	
	b. Force, energy, pressure, and power	16
	c. Temperature and heat	
	i. U.S. and its territories - Fahrenheit	
	ii. Rest of the world - Celsius and Kelvin	
	d. Measurements of other quantities	17
	B. Exponential and scientific notation	
	1. Exponents	
	2. Negative exponents	

3. Scientific notation	17
C. Precision and accuracy in measurement	18
Chapter Review questions	19
CHAPTER 3 - EXPERIMENTATION IN SCIENCE	21
I. How to design experiments	22
A. Independent variable	
B. Dependent variable	
C. Constants	
D. Experimental group	
E. Control group	
II. Scientific laws, theories, and models	23
A. Hypotheses	
B. Laws	
C. Scientific Theories	
D. Scientific Models	24
III. Major divisions of science	
A. Physics	25
1. Classical physics	
2. Modern physics	
B. Chemistry	
C. Biology	
D. Physical geology	
E. "Historical sciences"	26
1. Evolutionary biology	
2. Historical geology	
3. Cosmology	
4. Paleontology	
5. Archaeology	
6. Forensics	27
7. Textual criticism	
Chapter Review questions	
CHAPTER 4 - ASTRONOMY - THE BEGINNING OF THE SCIENCES	29
I. The beginnings of astronomy	
II. The pseudo-science of astrology	
A. The Chaldeans	30
B. The zodiac	
III. The roots of modern astronomy	31
A. Aristotelian ideas	
B. Further development of the geocentric model	33
C. Contributions of Arabian astronomers	
IV. The heliocentric model	
A. Copernicus	
B. Tycho Brahe	34
C. Johannes Kepler and the Laws of Planetary Motion	
D. Galileo Galilei	36

F	E. Isaac Newton	36
F	F. Stellar parallax.	37
(G. Absolute distances of the Sun and planets	38
F	H. Motion of the solar system	
I	. Practical naked-eye astronomy	39
Chap	pter Review questions	40
Chap	pter 4 References	41
CHA	APTER 5 - INTRODUCTION TO BASIC CLASSICAL (Newtonian) PHYSICS	43
	Energy	
A	A. Kinetic energy	
I	B Potential energy	
II. 7	Thermodynamics	
A	A. First Law - Conservation	44
I	B. Second Law - Entropy	
III. I	How objects move: Kinematics	
A	A. Motion and frame of reference.	
	1. Inertial reference frames	45
	2. Non-inertial reference frames	
I	3. Kinematic equations of motion	
	1. First equation	
	2. Second equation and variations	
	3. Third equation	46
(C. Two dimensional motion	
IV. V	Why objects change motion: Dynamics (Forces and motion)	47
A	A. The Law of Gravity	
F	B. Newton's Laws of Motion	
	1. First law - inertia	
	2. Second law - unbalanced forces	
	3. Third law - equal and opposite reactions	48
	a. How rockets fly	
	b. Conservation of momentum	
	c. Conservation of angular momentum	49
Ţ	Why Aristotle was wrong about falling objects	50
(C. If gravity is everywhere, why do you feel weightless in space?	
I	D. Fictitious forces.	
	1. "Centrifugal" force.	
	2. "Coriolis force"	51
V. V	Waves	
A	A. Mechanical waves	
	1. Longitudinal (compressional) waves	52
	2. Transverse waves	
	3. Water waves	
I	B. Electromagnetic waves	
	C. Characteristics of waves	53
	1. Parts of a wave	
	2. Speed of a wave	54

		3.		havior when moving from one medium to another	54
				Reflection	
				Diffraction	
				Refraction	55
		4.		instructive and destructive interference	
				Constructive	
				Destructive	
				Interference patterns	56
				ectromagnetic spectrum.	
	E.			particle duality	57
				ectromagnetic radiation	
				batomic particles	
				atter waves	
	F.			n perception of waves	58
				und	
		2.			
				oppler effect	
				lums (pendula)	
	I.		-	e machines	59
VI.		ectri	•		60
	A.			electricity	
				ghtning	
	_			atic discharge and static cling	61
	В.			nt electricity	
				rect current (DC)	
				ternating current (AC)	
				c power generation	62
Ch	apte	er Ro	evie	ew questions	63
CH	IAP	TEF	R 6	- INTRODUCTION TO BASIC CHEMISTRY	67
I.	Ba	sic c	con	cepts of practical chemistry.	
	A.	The	erm	odynamics.	
		1.	Fi	est Law - conservation.	
		2.	Se	cond Law - entropy.	
		3.	En	tropy in open systems.	68
			a.	Supply of usable energy	
			b.	Conversion mechanism	
			c.	Pre-existing information	69
			d.	Information vs. order	
			e.	Entropy increase at the energy source	70
	B.	Ele	me	nts, compounds, and mixtures	71
	C.	Ato	oms	, molecules, and formula units	
		1.	At	oms	
		2.	M	plecules	72
		3.	Fo	rmula units	
	D.	Sul	bsta	inces vs. mixtures	
	E	Phy	vsic	al and chemical properties	

	F. Physical and chemical changes	72
	G. States of matter	
	1. Solids	
	2. Liquids	73
	3. Gases	
	4. Plasma	
	5. Bose-Einstein condensate	
	6. "Quark soup"	
	H. The periodic table	
	1. Regions on the periodic table	
	Periodic table - courtesy of WIKIMedia user 2012rc	74
	2. Relative strength in attracting electrons	75
II.	Chemical reactions	
	A. Function of the subatomic particles	
	B. Using the periodic table to predict chemical reactions	76
	1. Shells (principal energy levels)	, ,
	2. Valence electrons	
	3. Ionic, covalent, and polar covalent bonds	77
	4. Chemical formulas	
	5. Polyatomic ions	
	C. Chemical equations	
	D. 3 dimensional shapes of molecules	78
	Historical development of chemistry	79
	A. The Democritus atom	,,
	B. Contributions of alchemists	
	C. Lavoisier	
	D. Dalton	80
	E. Mendeleev and the Periodic Table	81
	F. Thomson and the discovery of the electron	01
	G. Rutherford and the discovery of the nucleus and proton	82
	H. Moseley and the rearrangement of the periodic table	84
	I. Bohr and electron energy levels	01
	1. Emission and absorption spectra	
	2. Energy sublevels	85
	J. Further developments in quantum mechanics	03
	K Chadwick and the neutron	86
	L. Nuclear energy and its ramifications	87
	1. The Manhattan project	07
	2. Peaceful uses of nuclear energy	88
Cha	apter Review questions	89
	apter 6 References	91
Clic	apter o References	91
СН	APTER 7 - BIOLOGY PART 1 - ORIGIN OF LIFE	93
	Overall trends in the universe)3
	A. Evolution	
	B. Creation	
	The origin of life	94

A. Initial complexity		94		
B. Initial disorganization				
C. Actual observation		95		
1. The problem of atmospheric of	oxygen	96		
a. Lack of evidence for a prin				
b. How living things deal wi	th oxygen	97		
2. The oxygen-ultraviolet dilemn	na			
3. The trapping mechanism		98		
4. Nitrogen fixation				
5. The problem of optical isomer	rs (enantiomers)	99		
a. Chirality of amino acids a				
b. Optical isomers and proba	bility	100		
6. The problem of chemistry	•			
a. Interfering cross-reactions		101		
b. Oversimplification of the	Oparin-Haldane Hypothesis			
c. Probability of forming a co	ell ell	102		
d. Inability to reproduce				
7. The DNA/Enzyme dilemma				
8. The cell membrane		103		
D. Origin of life summary		104		
III. Is there life in outer space?				
A. Basic requirements for life		105		
B. What the Bible implies about life	in space			
C. What about reports of UFOs?		106		
1. Problems with the physics of		107		
2. SETI (Search for ExtraTerrest	rial Intelligence)	108		
IV. Chapter summary				
Chapter Review questions		109		
Chapter 7 References		111		
CHAPTER O DIOLOGY BARTA DIO	N OCH OF THE CELL	112		
CHAPTER 8 - BIOLOGY PART 2 - BIO	DLOGY OF THE CELL	113		
I. Biological classification systems				
II. Cell Theory		114		
A. How cell theory developed		114		
B. Limitations of microscopy		115		
1. Super resolution fluorescence	microscopy			
2. Electron microscopes				
3. Atomic force microscope		116		
4. X-ray crystallography	out have calle amounts	116		
C. How we know what we know abo	out now cens operate			
1. Present processes	and in a			
2. Past processes - origin of ever III. Structure of cells	yumg			
A. Basic structure				
		117		
B. Main types of cells1. Prokaryotes		11/		
2. Eukarvotes				
Z. DUNALYUIGS				

C. Ir	ternal structure of the cell	117
D. F	unctions of DNA	118
1.	Manufacture of cell components	119
	a. Chromosomes	
	b. Genes	
	c. Triplets	120
	i. Universal genetic code	1-0
	ii. Universal manufacturing mechanism	121
2	Self-replication of DNA	122
2.	Mitosis and meiosis	122
	a. Operation of enzymes	
	b. Nucleotide selection	123
	c. Preliminary proofreading	123
	d. Final error detection and correction	124
2	e. Summary of error correcting mechanisms	105
3	Effects of mutation	125
	a. No mutations known to increase genetic information	126
	b. No mutations known to benefit a species	
	c. "Mutations" in bacteria and insects	127
4.	Storage of genetic information	
	a. Unpredictability of numbers of base pairs	
	b. Excess capacity of information storage	128
	c. Duplication of genes and chromosomes	
	d. Coding, e.g., antibody production	
IV. Conc		130
Chapter I	Review questions	
-	3 References	134
•		
PART II	- "Historical Science"	
CHAPTE	ER 9 - BIOLOGY PART 3 - THE SEARCH FOR DESIGN IN NATURE	137
	ppositions of evolution and creation	107
	Itimate source of the universe	
	Evolution - natural processes only	
	Creation - possibility of supernatural intervention	138
	ossible mechanisms for the origin of the universe	130
	Evolution - only one possible explanation	120
	Creation - several possible explanations	139
	ge of the universe	
	Evolution - extreme age	
	Creation - no specific age required	
	ource of the geologic record	
1.	Evolution- uniformitarianism	
2	Creation - catastrophism	140
E. So	urce of similarities between living things	
1.	Evolution - common ancestry	
2	Creation - common design	

	F.	So	urce of ultimate authority about nature	140
		1.	Evolution- scientists	
		2a.	Recent Creation - the Bible.	
		2b	The Gap Theory - In most areas, scientists	141
		2c.	"Progressive Creation" - scientists	
II.	Sc	ienc	e and the search for design	
	A.	Ar	guments against design, and the response	142
		1.	Rejection of the supernatural	
		2.	The argument form imperfection	143
	B.	Но	w to recognize design	
		1.	Weak arguments: matters of opinion	
		2.	Stronger arguments: specified improbability	
		3.	Strongest argument: Irreducible complexity	144
	C.	Но	w evolutionists deal with the appearance of design	146
III.	Sp	ecif	ic examples of design	147
	Ā.	DN	NA as a language / communication system	
	В	Op	eration of DNA	
	C.	Irr	educible complexity of cell reproduction	
	D.	Un	iversal genetic code and manufacturing apparatus	148
	E.	Un	iversal error correcting mechanism	
	F.	Ble	ood coagulation	
	G.	An	tibody production	149
	Н.	Ce	ll structures	150
		1.	Vacuoles	
		2.	Lysosomes	151
	I.	Sp	ecialized organs and structures	
		1.	The giraffe's neck	
			a. Survival of other leaf eaters	
			b. Ability to eat grass	
			c. Fossil giraffes	
			d. Sexual dimorphism	152
			e. Height at weaning	
			f. Internal neck structures	
		2.	Active transport of minerals in plants	153
		3.	Interdependence of animal and plant kingdoms	
		4.	Sap transport in trees	
			Bacteria with electric motors	
		6.	The climbing gobies of Hawaii	
		6.	Defense mechanisms	154
			i. Corals	
			ii. The Bombardier Beetle	
			iii. Camouflage	155
		7.	Bioluminescence	
		8.	Symbiosis	156
			i. Insects and plants	
			ii. Cleaning symbiosis	
			iii. Hunting and protection	157
		9.	Migratory birds	

Introduction to General Science from a Christian Perspective by D. Prentice

10. The human eye	158		
Chapter Review Questions			
Chapter 9 References			
CHAPTER 10 - INTRODUCTION TO THE FOSSIL RECORD	163		
I. Contrasting beliefs about the development of life since its origin			
A. Initial complexity			
B. Initial disorganization			
C. Actual observation not possible	164		
II. The geologic column			
A. Nomenclature			
1. Archaeozoic era (Pre-Cambrian)			
2. Paleozoic era			
3. Mesozoic era	165		
4. Cenozoic era			
III. Adequacy of the fossil record			
A. Arguments for and against initial complexity			
B. Arguments for and against initial disorganization: Neo-Darwinism	166		
C. Arguments for and against initial disorganization: Punctuated equilibria			
D. Summary of the three models	167		
IV. Contrasting beliefs about how strata were deposited			
A. Initial complexity	168		
B. Initial disorganization			
C. Actual observation			
1. Large scale deposition and erosion of strata in nature			
2. Deposition of strata under laboratory conditions			
D. Summary of actual observation	169		
V. Contrasting beliefs about how fossils were formed			
A. Initial complexity - rapid burial			
B. Initial disorganization - slow fossilization			
C. Actual observation - conditions needed to form fossils			
1. Fossilized bones in lab experiments			
2. Oil			
3. Rapid mineralization	170		
D. Summary of actual observation	170		
VI. Contrasting interpretations of the rock strata			
A. Initial complexity - strata represent ecological communities			
B. Initial disorganization - strata represent time periods			
C. Actual observation	171		
Strata identified by suites of fossils	1/1		
2. Missing or out of sequence strata			
3. Stratigraphic level of fossils supposed to be the oldest			
D. Summary of interpretations			
VII. Expected characteristics of the fossil record	172		
A. Initial complexity	1/2		
Sudden appearance of terminal forms			
2. Stasis			

B1.Initial disorganization - Neo-Darwinism 1. Gradual development of terminal forms	172
2. Continual gradual change	
B2. Initial disorganization - Punctuated Equilibria	
1. Stasis	
2. Sudden appearance	
C. Actual observation	
1. Sudden appearance of terminal forms	
mi nit	
	Symlogian 172
b. Sudden appearance of many higher taxa - the Cambrian E	_
c. Explosive appearance of mammals in the Cenozoic Era	174
2. Stasis	175
VIII. Chapter summary	176
A. Expectations of initial complexity	176
B. Expectations of initial disorganization	1.77
Chapter Review Questions	177
Chapter 10 References	178
CHAPTER 11 – FOSSIL FISH, AMPHIBIANS, REPTILES	181
I. Classification systems	
A. Linnaean system	
B. Phylogenetics (Cladistics)	
II. Fish to amphibians	183
A. Most common textbook scenario	102
B. Why would fish evolve into amphibians?	
Contrast of basic explanations for origin of amphibians	
a. Initial disorganization	
b. Initial complexity	184
2. Error correcting mechanisms in DNA	104
3. Insufficiency of drought scenario	
C. Fish proposed as ancestors of amphibians	
1. Coelacanths (Order Crossopterygii or Actinistia)	185
2. Lungfish (Order Dipnoi)	103
	186
3. Anatomical problem with both types - backbone D. General differences between fish and amphibians	100
D. General differences between fish and amphibians	
 Major anatomical differences Method of fertilization 	187
a. Internal	10/
a. Internal b. External	
3. Metamorphosis	100
a. Absence of metamorphosis in crossopterygians and lungfish	188
b. Metamorphosis in non-crossopterygian fish	
i. Actinopterygii - "ray-finned"	
ii. Agnatha - jawless fish	100
E. Amphibians proposed as the earliest types	189
1. Absence of intermediates	100
2. Alleged transition (<i>Tiktaalik</i>) out of sequence	190

F. Unexplained origin of non-labyrinthodont amphibians	190
1. Structure of backbone and vertebrae	
a. Rhachitomous vertebrae (multi-part centra)	191
i. Crossopterygians and lungfish	
ii. Order Ichthyostegalia	
iii. Order Temnospondyli	
iv. Order Anthracosauria	
b. Lepospondylous vertebrae (one-part centra)	
2. Extinct amphibians	
a. Order Ichthyostegalia	192
b. Order Temnospondyli	
c. Order Anthracosauria	
3. Amphibians on the geologic column	
a. Subclass Labyrinthodontia, Order Ichthyostegalia	
b. Subclass Lepospondyli	193
i. Order Aistopoda	
ii. Order Nectridea	
iii. Order Microsauria	
4. Living amphibians (Lissamphibia)	
a. Order Urodela or Caudata	
b. Order Apoda or Caecilia	
c. Order Anura or Salientia	
III. Amphibians to reptiles	194
A. Why would amphibians evolve into reptiles?	
1. Skin	
2. Maturation	
3. Breathing	
4. Fertilization	
5. Eggs	195
B. Amphibians and reptiles on the geologic column	
IV. Chapter Summary	196
A. Reasons for belief in Initial Disorganization	
B. Reasons for belief in Initial Complexity	
Chapter Review Questions	197
Chapter 11 References	198
CHARTER 12 ACE OF THE FARTH	
CHAPTER 12 - AGE OF THE EARTH	201
I. Historical beliefs about the age of the earth	201
II. Arguments for an old earth.	202
III. Response to old-earth arguments. A. How are fossils formed?	203
1. Uniformitarianism	204
a. Need for rapid burial	204
b. Large scale fossil formation	
2. Catastrophism (Creation) P. Goologie features	
B. Geologic features 1. Strata identified by suites of fossils	205
L. MHATA TUCHILLICU DV SHITES OF TOSSUS	Z.(J.)

	2.	Uniformitarian basis of the geologic column	206
	3.	Origin of life and the stratigraphic level of fossils supposed to be oldest	
C.	Bil	olical creation / Flood model	207
	1.	Mud flows / mudslides	
	2.	Effects of tectonics and tides	
	3.	Biome succession	208
	4.	Biblical timeline of the Flood	209
D.		ssible correlation of the Flood with sedimentary layers	
		Archaeozoic era	210
	2.	Paleozoic era	
		a. Cambrian, Ordovician, Silurian	
		b. Devonian	211
		c. Carboniferous (Pennsylvanian and Mississippian)	
		d. Permian	
	3.	Mesozoic era	
	4.	Cenozoic era	212
		a. The K-T (K-Pg) boundary	
		b. Where did the water go? Vertical plate tectonics	
		c. Tertiary and Quaternary periods	213
	5.	Proposed overall Flood model	214
		Post-Flood separation of humans - the Tower of Babel and the Ice Age	215
E.		guments against uniformitarianism	216
	1.	Origin of the universe and earth	217
	2.	Separation of the initial supercontinent	
		Mountain building	
	4.	Complete geologic column not found in nature	218
		Clearly defined strata	
	6.	Out-of-order strata	
		a. Creation: Flood action.	219
		b. Evolution: overthrusting	
	7.	Misplaced fossils	
	8.	Mass extinctions	
	9.	Fossil graveyards	220
		. Polystrate fossils	
	11.	. Deformation of sedimentary layers	
	12.	. Rapid formation of geologic features	
		a. Mt. St. Helens	221
		i. Pyroclastic mud flows	
		ii. Soft rock erosion: the "Little Grand Canyon" of the Toutle River	
		iii. Hard rock erosion: "Step Canyon"	
		iv. Trees at the bottom of Spirit Lake:	222
		a possible clue to "multiple forests"	
		b. The Grand Canyon	
		i. Missing sediment	223
		ii. Topography of the Canyon	
		iii. Indication of rapid deposition- the Redwall Limestone	
		iv. Petrified Forest	

v. Meteor Crater	224
c. Salt domes	
d. Coral reefs	225
F. Positive arguments for a young earth	
1. Temperature and thickness of the earth's crust	
2 Helium in the atmosphere	226
3. Helium diffusion in rocks	
4. Rate of carbon-14 production	
5. The missing meteorites	227
6. Oil pressure	
7. Pleochroic haloes	228
Decay chain from U-235 to Pb-206	229
IV. Old earth argument #3: Radiometric dating	230
A. Uncertainties of radiometric dating	231
1. Initial ratio of parent-to-daughter	232
a. Origin of radioactive elements	
b. Imperfect mixing	
c. The early environment	
2. Constant rate of decay	
3. No parent or daughter added or removed	234
B. Potassium-Argon dating	
C. Problems with carbon-14 dating	235
1. Loss of carbon content	236
2. Environment	
3. Atmospheric C-12/C-14 ratio	
4. Short half-life	
5. External factors	
6. Concentration of C-14 in the organism at death	
D. Other reasons fossils are not radioactively dated	
1. Sediment too finely divided to date	
2. Only volcanic rocks directly datable	
E. Examples of erroneous radiometric dates	237
F. Isochron dating	238
1. Rationale of isochron dating	239
2. Fatal flaws in the method	
a. Imperfect mixing	
b. Arbitrary meaning of slope	
c. Negative ages	
d. Need for a closed system	
G. Geochrons	240
SUMMARY	
Chapter Review questions	241 243
Chapter 12 References	

PREFACE

The human race has acquired a great deal of knowledge about how the world works. The conclusion many have drawn from this knowledge is that the most reasonable explanation for the intricacy and complexity of the universe is that a fantastically intelligent God made it.

"When I consider thy heavens, the work of thy fingers, the moon and the stars, which thou hast ordained; What is man, that thou art mindful of him? and the son of man, that thou visitest him? 5 For thou hast made him a little lower than the angels, and hast crowned him with glory and honour. Thou madest him to have dominion over the works of thy hands; thou hast put all things under his feet: ... O LORD our Lord, how excellent is thy name in all the earth!" Psalms 8:3-9

Others, though, have become puffed up and think that because of their intelligence they have outgrown the need for God. He has a sobering warning for them:

"For the wrath of God is revealed from heaven against all ungodliness and unrighteousness of men, who hold the truth in unrighteousness; Because that which may be known of God is manifest in them; for God hath shewed it unto them. For the invisible things of him from the creation of the world are clearly seen, being understood by the things that are made, even his eternal power and Godhead; so that they are without excuse: Because that, when they knew God, they glorified him not as God, neither were thankful; but became vain in their imaginations, and their foolish heart was darkened. Professing themselves to be wise, they became fools." Romans 1:18-22

It is the author's fervent hope that the material in this course will lead the student to the former conclusion. Knowledge of science without the saving knowledge of Jesus Christ is worth nothing. "And though I have the gift of prophecy, and understand all mysteries and all knowledge, and though I have all faith, so that I could remove mountains, but have not love, I am nothing." 1 Cor 13:2 (NKJV) Knowledge that honors Him is worth everything.